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Relations Between Entropy and Error Probability 
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Absfmct-The relation between the entropy of a discrete random 
variable and the minimum attainable probability of error made in 
guessing its value is examined. While Fano’s inequality provides a tight 
lower bound on the error probability in terms of the entropy, we derive 
a converse result+ tight upper bound on the minimal error probability 
in terms of the entropy. Both bounds are sharp, and can draw a relation, 
as well, between the error probability for the maximum a posteriori 
(MAP) d e ,  and the conditional entropy (equivocation), which is a useful 
uncertainty measure in several applications. Combining this relation 
and the classical channel coding theorem, we present a channel coding 
theorem for the equivocation which, unlike the channel coding theorem 
for error probability, is meaningful at all rates. This theorem is proved 
directly for DMC’s, and from this proof it is further concluded that for 
R > C the equivocation achieves its minimal value of R - C at the rate 
of i1/2 where n is the block length. 
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I. INTRODUCTION 
Intuitively, the entropy H of a random variable measures its 

complexity, or its degree of randomness. It seems plausible that 
the higher the entropy the harder it is to predict the value taken 
by this random variable. If the money made in gambling on the 
predicted value is a criterion for good prediction, this intuitive notion 
is affirmed by the observation (see, e.g., [IO], [3]) that the optimal 
capital growth rate achievable by gambling on the outcome of, say, a 
binary random variable is 1 - H ,  i.e., the smaller the entropy the larger 
is the achievable capital growth rate. However, the degree of difficulty 
in predicting the value of the random variable is more naturally 
assessed by the minimal possible error probability associated with any 
prediction procedure. As was observed in [5] ,  this prediction error is 
not uniquely determined by the entropy, i.e., two random variables 
with the same entropy may have different minimal prediction error 
probabilities. 

In this work we further explore the relationship between the entropy 
of a random variable and the minimal error probability in guessing its 
value. While the well-known Fano inequality provides a tight lower 
bound on the error probability in terms of the entropy, we derive a 
converse result-a tight upper bound on the minimal error probability 
in terms of the entropy. This converse result is known in the binary 
case, see, e.g., [l] and [8], but we derive here the bound for the 
general case and show that it is tight. Since both Fano's inequality and 
the new bound are sharp, they determine the region of all allowable 
pairs of entropy and minimal error probability. These bounds are also 
applied to conditional entropies and the error probabilities obtained in 
the maximum a posteriori (MAP) rule: thus they also draw a relation 
between the entropy rate of a process (the process compressibility) 
and the minimal expected fraction of errors made by predicting its 
future outcome (the process predictability). Similar relations exist 
between the minimal average fraction of errors made in sequential 
prediction of sequences from a given set, and the size of the set. 

While the entropy is the basic measure of uncertainty used in 
information theory, the channel coding theorems are usually stated 
in terms of the error probability. The relation between entropy and 
error probability allows us to state these theorems in terms of the 
entropy. In this work we prove directly the channel coding theorem 
for discrete memoryless channels (DMC's) using the conditional 
entropy of the channel input given the channel output (equivocation) 
as the desired error measure. Unlike the standard coding theorem, this 
coding theorem is relevant in describing the behavior of information 
transmission at rates below capacity, at capacity, and above the 
channel capacity. 

Let us first recall the definitions of the entropy and the minimal 
error probability. Let X be a random variable over the alphabet 
{ 1, - .  . , M}, and suppose its probability distribution (p(z)}"21,, is 
given. The entropy of the random variable is 

M 

H ( X )  = -E(4 logp(z) (1) 
Z = l  

where throughout the paper log = log, and the entropy is measured 
in bits. In the absence of any other knowledge regarding X, the 
estimator of X that minimizes the error probability is the value 2 with 
the highest probability. Let p = p ( 2 )  = maxEp(z). The minimal 
error probability in guessing the value of X is thus, 

(2) .(X) = C p ( x )  = 1 - p .  
Z#* 

The maximal entropy over an alphabet of size M is logM, while 
the highest possible minimal error probability is (M - l)/M, both 
attained by a uniform random variable. On the other extreme, a 
random variable for which the entire probability mass is concentrated 

on a single value, has both a zero entropy and a zero minimal error 
probability. 

The "uncertainty" in X given another random variable Y is usually 
assessed by the conditional entropy, or the equivocation. Let Y be a 
random variable (or vector) over an arbitrary sample space y with a 
well-defined probability distribution P(y) ,  such that for each y E y 
(with a possible exception of a zero measure set), a probability mass 
function p(.ly) is well defined. Then we define the equivocation as 

The minimum probability of error in estimating X given an observa- 
tion y of Y is attained by the maximum a posteriori (MAP) estimator, 
i.e., by 2(y) = argmax,p(zly). Thus, the expected minimal error 
probability is 

(4) 

Let X = { X t } E - m  be a stationary ergodic random process. The 
entropy rate of this process is given by 

X(X) = lim H ( X n ( X n - l , . . - , X 1 ) .  
n-o3 

Similarly, we define the predictability of the process as 

I I ( X )  = lim 7r(Xn1Xn-1,- . . ,X1) (6) 
n-bo 

where this quantity is the expected minimal error probability in 
predicting the future value of the process given its past. The limits 
in (5) and (6) exist since both the conditional entropy and the 
predictability are positive and monotonically nonincreasing with n. 

In the next section we present the bounds and the relation between 
the entropy and the minimal error probability. Despite the fact [5] 
that there is no one-to-one relation between the entropy and the 
minimal error probability, the bounds affirm that a variable is totally 
random (i.e., its entropy log M) iff it is totally unpredictable (i.e., its 
minimal error probability is (( M - 1)/M) and conversely, a variable 
is totally redundant (i.e., its entropy is zero) iff it is fully predictable 
(its minimal probability of error is zero). In Section 111, the relations 
are applied to derive a bound on the fraction of errors made by 
arbitrary predictors over a set of arbitrary sequences. Finally, in the 
last section, we present a channel coding theorem in terms of the 
equivocation. This theorem could have been derived by combining 
the classical coding theorem which deals with the error probability 
and the relations presented here. We chose to develop in this work a 
direct proof, which we believe provides more insight on the behavior 
of the equivocation at rates equal or greater than the channel capacity. 

11. THE BOUNDS 
Consider first a discrete random variable X taking values in the 

, M} with probabilities p (  l), p ( 2 ) ,  . . . , p (  M), and assume set { 1, . 
without loss of generality that 

We define the probability vector p = [p( l ) , . . -  , p ( M ) ] ,  and use 
interchangeably the notation H ( p )  or H ( X )  for the entropy and 
similarly we use interchangeably ~(p)  or . (X)  for the minimal error 
probability (or the predictability). Note that p(1) = 1 - +). 

Clearly given T we can bound the eatropy as 

(7) 

where P, is the set of all vectors p such that p ( i )  2 O M ,  E, p ( i )  = 
1 and p(1) = 1 - n. As shown in the following two lemmas, the 
maximization and minimization in (7) can be solved explicitly. 
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Mhhd Error Robability (RedbA&U - 9) 
Fig. 1. The functions @(.), 4 ( , ) ,  and +*(.), and the region d. 

Tc 

Lemma I: The maximum in (7) is achieved by " Lemma 2: The minimum in (7) is achieved by pmi,,(7r) = 
b ( l ) , . . . , p ( M ) l  where 

and the corresponding maximum entropy is p(1) = p ( 2 )  = 1 - 7r, p ( 3 )  = 27r - 1, 
p(4) = . . . = p ( M )  = 0, ; I T < ;  

*(x) = B ( p m a x ( x ) )  = h(x) + x l o g ( M  - 1) (9) 

where h(a) = --LY log a - (1 - a) log (1 - a )  is the binary entropy 
function. 

Note that for any random variable X over an alphabet of size M, 
Eq. (9) implies that 

H ( X )  < h(7r) + xlog (M - I), (10) 

which is a special case of Fano's inequality. The proof of Lemma 1 
is straightforward and is given, for example, in [4, p. 39 and p. 481. 
In fact, the proof in [4] was provided to show that Fano's inequality 
is sharp. 

p(1) = . . . = p ( M  - 1) = 1 - n-, 
p ( M )  = 1 - ( M  - 1) (1 -  7r), M--2 M-1 - M-1 I ..I 7 

(11) 
and the corresponding minimum entropy d(7r) is shown in (12) at 
the bottom of the page. 

This lemma is easily shown by straightforward verification of the 
Kuhn-Tucker conditions. Note that ~$(7r) is a continuous function 
with a piecewise continuous derivative, composed of M - 1 concave 
segments where the ith segment is composed of a linear term with a 
slope -i log i and a concave binary entropy function whose argument 
takes values in the interval [0, l / ( i  + l ) ] .  The lower and upper 
bounds on the entropy for any value of minimum error probability 
are depicted in Fig. 1, for M = 8. 

Since both 4( . )  and a(.) are strictly monotonically increasing 
continuous functions, they have well defined inverses. Thus, if the 

0 < 7 r < ;  
f l 7 r S ;  

y < = < &  

2(1-  7r) + h(2x - l ) ,  

1-1 (12) - 7r) + h(i7r - ( i  - l ) ) ,  

(M - l ) l o g ( M  - 1)(1-  x) + h ( ( M  - 1)7r - M + 2), e < x < 7. M - 1  

d ( ~ )  = Bbmin(T) )  = 
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entropy of the random variable is known, say H ,  we can find upper 
and lower bounds on the minimal error probability 7r(X) ,  i.e., 

+ - ' ( H )  2 w ( X )  2 +- ' (H) .  (13) 

Consider now the relation between the conditional entropy (equiv- 
ocation) H ( X 1 Y )  and the MAP error probability, n ( X 1 Y ) .  It will 
be useful to define the following function 

4*(r) 
0 5 7 r 5 ;  
; S T < $  

where a, = i(i + l ) l og ( ( i  + l)/i), that is a1 = 2 < a2 = 
61og (3 /2 )  < . . . < U M - ] ,  and b, = logi. This function, composed 
of M - 1 piecewise linear segments is continuous and convex. It 
is the largest convex function that is still smaller than or equal 
to ~ ( z ) ,  for 0 5 z 5 (M - l ) / M .  It coincides with 4(z) 
at I = 0, 1/2, 2/3, .  . . , (M - 1 ) / M  where it takes the values 
0, 1, log3, . . .  , l ogM.  It also coincides with @(z) at z = 0 and 
z = (M - 1 ) / M  where both functions take the values 0 and log M ,  
respectively. Actually, if A is the set of all points if? the 7r - H plane 
that satisfy (13), the convex hull of A, denoted A, is the set of all 
points for which 

@(.) 2. H 2 4*(7r). (15) 

Having these definitions, we present the following theorem: 
Theorem-1: The equivocation and the MAP error probability lie 

in the set A in the 7r - H plane, i.e., the equivocation can be bounded 
in terms of the MAP error probability as 

@ ( w ( X I Y ) )  2 H ( X I Y )  2 4 * ( + w ) ) .  (16) 

Prooj We may write the equivocation as 

H ( X I Y )  = s, H ( X l Y )  W y )  

4 X l Y )  = s, ..(XI!!) dP(Y) 

and the MAP error probability as, 

where for each y E Y ,  H(X(y) = H ( X ( Y  = y )  and w(Xly)  = 
n ( X I Y  = y )  are the entropy and the predictability, respectively, of 
a discrete random variable that can take M values. Thus, the points 
{c(y) = ( ~ ( X l y ) ,  H ( X l y ) ) ,  y E Y }  lie in the region A in the 
7r - H plane. Clearly, the point c = ( r ( X J Y ) ,  H ( X J Y ) )  is a convex 
combination of the points c(y) where the weights of this combinatio! 
are given by the distribution P (y ) .  Thus, the point c must lie in A, 

The region A, for the case M = 8, is also depicted in Fig. 1. 
Observe that both inequalities in (16) are tight, i.e., both inequalities 
can be obtain? with equality and so every point on the boundary 
of the region A can be attained. The upper bound in (16) is attained 
when the conditional distribution p(zly) is the same for all y E y 
with a non-zero measure, and is such that H(X(y) = h ( n ( X ( y ) )  + 
~ ( X l y )  log (M - 1). The lower bound is attained with equality when 
for some y E Y ,  p(zly) has a uniform probability mass of l / i  over i 
values and so n ( X l y )  = ( i - l ) / i  and H ( X l y )  = logi, while for the 
rest y E Y ,  p(zJy) has a uniform probability mass of l / ( i  + 1) over 
i + 1 values and so w(Xly)  = i / ( i  + 1) and H ( X l y )  = log ( i  + 1). 

the convex hullpf A. 0 

An immediate corollary of the theorem above is that the entropy 
rate R(X) and the predictability n(X) of any stationary process X 
over an alphabet of size M also lie in the region d in the w - H 
plane, i.e., 

The upper bound is tight whenever the process can be "whitened" by 
optimal prediction (i.e., the prediction error process is i.i.d.) and the 
probability distribution of the error process is such that the M - 1 
possible error values have the same probability of n / ( M  - l), while 
no error is made with probability 1 - II. The lower bound is attained 
when at some fraction p of the time there is an ambiguity between 
i values, each has the same probability of l / i ,  and in the rest of the 
time, there is an ambiguity in predicting the next outcome between 
i + 1 values. In this last case, the resulting fraction of error will be 
p[ ( i  - l ) / i ]  + (1 - p ) [ i / ( i  + l)], while the entropy rate will be 

When we closely observe the points ct where w = [(i - l ) / i ]  and 
H = log i ,  i = 1,. . , M - 1, i.e., the points which lie on the lower 
bound and at which q5(7r) = 4*(7r), we observe that at these points 
H = log[1/(1 - T)]. Define 

p log i  + (1 - p)log(i  + 1). 

1 
1 - 7 r  

4)(?r) = log - 

and observe that &(.) is a convex function that underbound 4 ( . )  
and 4*( . ) .  Thus, a lower bound on the entropy in terms of the 
predictability is H 2 4'(7r). Of course this bound is tight only at 
the points c, , Nevertheless this bound is interesting, recognizing 

R,(x) lim R,(x) = lim - 1 l o g x p ( z ) q  
4 - m  1 - q 4 - 0 0  

X 

(19) = log - 1 = log - 1 
maxz p ( z )  1 - .(X) 

where R 4 ( X )  is the Rknyi entropy of order q of X .  We recall that 
Shannon's entropy is the Rknyi entropy of order 1. The bound (18) 
thus follows from the known fact [9], asserting that for all q > 1, 
R , ( X )  5 R i ( X )  = H ( X ) .  

In this respect we further note that due to the one-to-one rela- 
tionship between w ( X )  and R,(X) ,  given by (19) or its inverse 
r ( X )  = 1 - 2-Rm(x), Fano's inequality together with our Lemma 
2 provide the region of allowable pairs of R,(X) and H ( X ) ,  i.e., 
for any value of R,(X) 

4(1- 2-R"(X)) 5 H ( X )  5 @ ( 1 -  2-R-q. (20) 

The left inequality tightens the well known relation R,(X) 5 
H ( X ) .  Now, it should be observed that while T ( X )  and R,(X) 
have a one-to-one relationship, this is no longer true for r ( X I Y )  
and R,(XIY). Thus, while the convex hull of the region given by 
(20), which is 

(21) 

provides all allowable pairs of R,(XIY)  and H(XIY),-this convex 
hull is different from the one-to-one transformation of A, given by 

(22) 

Nevertheless, one may observe from Fig. 2 where both regions 
implied by (21) and (22) are also depicted, that for large, or even 
moderate, values of R, 

(23) 

and so in this case the bound R, 5 H at R, = -log (1 - 7r) is 
indeed a good lower bound on the entropy as a function of the error 
probability. 

R,(XIY) < H ( X 1 Y )  5 9 ( 1 -  2-R"(Xly)) 

4*(1 - 2-R"(Xly)) 5 H ( X 1 Y )  5 q 1 -  2-R"(Xly)). 

N (#)*(I - 2-R"(Xly)) Rm - 
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Fig. 2. The functions: (a) H = @(l - 2 - R - ) ,  (b) H = @(l - 2 - R w ) ,  (C) H = @*(l - 2 - R m ) ,  and (d) H = R,, and the resulting 
regions in the H - R, plane. 

As noted above, in the binary case, the fact that the entropy 
(or entropy rate) and the predictability do not have a one-to-one 
relationship, and the relevant bounds 

or equivalently, 

have been mentioned in [5] .  It tums out that the lower bound in (24) 
for the binary case has been previously derived in [l], see also [8]. 
Furthermore in [7, pp. 520-5211. it has also been used for nonbinary 
discrete random variables. However, our lower bound in (17) is tighter 
since always + * ( x )  2 2 ~ ,  and for nonbinary variables the inequality 
is strict for A > 1/2. 

We finally point out that the techniques presented here can be used 
to derive upper and lower bound on the average loss in terms of 
the entropy, for general loss functions. For example, the minimum 
mean square error in estimating a random variable is measured by its 
variance. Thus, one can find the maximum entropy and the minimum 
entropy of a random variable under a variance constraint, as a function 
of the variance value. By drawing the region between these two 
functions, and considering its convex hull, one obtains the entire 
set of achievable pairs of entropy and mean square error values. 

In. PREDICTION OF DETERMINISTIC SEQUENCES FROM A FINITE SET 

We now confine our attention to sequential prediction of arbitrary 
deterministic sequences. To simplify the exposition we consider in 
this section binary sequences. Recall that a sequential predictor of a 
binary sequence is a procedure for producing at each instant t ,  upon 
observing the data 2 1 ,  . . . , z t ,  an estimate of the next outcome &+I, 

&+I = ft(zt,...,z1) . (26) 

In general ft(-) can either be deterministic or stochastic. The perfor- 
mance of a deterministic sequential predictor is measured in terms 

of the fraction of prediction errors along the sequence, i.e., for a 
sequence z = 51, . , 2, of length n, 

where 6(a, b)  is 1 for a = b and 0, otherwise. For stochastic 
predictors, the performance is given by 

where it should be kept in mind that the expectation is with respect 
to the predictor’s randomness while the sequence z is fixed. 
Now, as noted in [2], for any sequence there is a predictor that 

happens to guess correctly its future values, but this predictor may 
not perform well on other sequences. Thus, we consider the average 
performance of any predictor over a set of deterministic sequences. 
Interestingly, the relation between this average number of errors and 
the logarithm of the number of sequences in the set is the same as 
the relation between the predictability and the entropy derived in 
the previous section. An additional insight is gained by explicitly 
describing the structure of the sets of sequences that attain the 
resulting bounds. 

Suppose we have a set X of N binary sequences {dl), . . , d N ) }  
each of length n. The performance of any predictor over this set is 

and so the performance of the best predictor for this set is 

a(X) = minaf(X) (30) f 

where the minimization is over all predictors, deterministic or sto- 
chastic. We claim the following theorem. 
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Theorem 2: For any set X of N binary sequences of length n 

-.- 
2 n  

This theorem is related to the bounds in the previous section. To 
see this, construct a binary random process which emits blocks of 
length n, where each such block can be any of the N sequences in 
the set with equal probability. The entropy rate, which is the entropy- 
per-symbol of the block, is logN/n.  It can also be shown that the 
predictability of this process is given by (30). With that, the theorem 
can follow by applying the bounds in (25). We, however, prove below 
the theorem directly using combinatorial arguments since this proof 
provides an additional insight on the structure of the sets that attain 
the bounds. 

Pro03 We begin with the lower bound. As was observed in 
[2], Proposition I, when all 2” binary sequences of length n are 
considered, any deterministic predictor makes exactly k errors over 
(;) sequences, i.e., there is one sequence on which this predictor 
makes no error, n sequences with a single error, (i) with two errors, 
etc. Thus, the best one can hope for, is to exhaust all possibilities 
of making i errors or less before making i + 1 errors. Let m be the. 
largest integer such that 

q;) I N. 
*=O 

The minimal total number of errors made by any deterministic 
predictor over N sequences of length n is lower bounded by 

and so 

(33) 

Using linear interpolation and considering kn(.)  as a function of a 
continuous argument we observe that it is a piecewise linear, concave, 
monotonically increasing function, having a slope 0 between z o  5 
z 5 zl, a slope 1 at 21 5 z 5 2 2 .  a slope 2 at 2 2  5 z I 23, etc. 
where 20 = 0, 11 = 1, 2 2  = z1 + n  and in general zi+1 = zi + (:). 
Since kn(.) is convex and since the performance of any stochastic 
predictor is a convex combination of deterministic predictors, the 
lower bound (33) holds for stochastic predictors as well. 

It is easy to verify that k n ( z )  2 nzh-’(Iogz/n), 1 5 2 5 2”. 
Thus, 

(34) 

and the lower bound is proved. 
We now prove the upper bound. Let N ( u )  be the number of 

sequences in X that begin with the string U. In this notation N = 
N(A) where A is the empty string. The predictor that minimizes 
the total number of errors predicts “0,” upon observing the string v, 
if N ( u 0 )  > N(v1) and “1,” otherwise. Thus, the minimum total 
number of errors over all sequences is 

n-1 

n - N - F ( X )  = min{N(vO), ~ ( v l ) ) .  (35) 
i=O”E{o, I}* 

Since for O 5 a 5 1, min{a, 1 - a} 5 ;h(a), 

Multiplying both sides of (36) by N ( v ) ,  substituting in (35) and 
rearranging the summation, we get 

where p , ( z ( Z ) )  denotes the prefix of length j of the sequence d*).  
Now observe that due to telescopic multiplication 

for each sequence z(*). Substituting in (37), proves the upper bound. 
0 

An example where the lower bound in (33) [which is slightly 
better than (31)] is attained with equality is the set which contains all 
sequences of length n. whose number of ones is less than or equal to 
k for some k 5 n. Clearly, a predictor that constantly predicts 0 will 
attain (33) on this set. The upper bound in (31) can also be attained 
with equality. For example, consider the set of 2‘“ sequences, k I n,  
each beginning with a different prefix of length k and continuing 
arbitrarily (e.g., for each sequence the last n - k bits are zero). Since 
in the first k bits all 2’” possibilities appear, on the average any 
predictor will make k/2 errors in these initial bits. Now the first k 
bits determine the sequence and so the optimal predictor will not 
make any error over the remaining n - k bits for any sequence. The 
total average fraction of errors is thus k/(2n) = log N/(2n), as the 
upper bound. 

Note that when the set of sequences is a type Q, i.e., the set 
of all sequences with a given count of zeros and ones, then N = 
2nHe(Q)+o(10gn) where He(&)  is the empirical entropy, which is 
the same for all sequences in the type. In this case for large n the 
relation (31) becomes 

1 
s H e ( Q )  1 F(&) 2 h-l(HC(Q)) 

which is analogous to the probabilistic case with empirical probabil- 
ities replacing true probabilities. Also note that the bounds in (31) 
affirm the intuitive notion that the average fraction of errors over all 
possible sequences of some length cannot be better than prediction by 
coin-tossing, i.e., 50% errors, while if the number of sequences in the 
set grows less than exponentially fast with the sequence length the 
average fraction of prediction errors can be made arbitrarily small. 

IV. A CHANNEL CODING THEOREM FOR THE EQUIVOCATION 
The coding theorems of information theory are usually stated in 

terms of error probability. However, it might be useful to state the 
theorems in terms of the equivocation, for the following reasons. First, 
the equivocation is a useful uncertainty measure with applications, 
e.g., in cryptology, see [ll] and references therein. Second, the 
equivocation measures naturally the minimal residual uncertainty 
about the input,‘achievable in, e.g., observing the data via a noisy 
channel. Also, this statement is simpler; in transmitting information 
at rate R via a noisy channel, the equivocation of the input can be 
made R - C if R 2 C, and 0 if R 5 C where C is the channel 
capacity. Throughout this section, R and C are measured in bits per 
channel use. 

The channel coding theorem for the equivocation can be easily 
proved, for R < C, by combining the regular channel theorem, 
in terms of error probability, and the fact, discussed below, that 
zero equivocation is achieved if and only if zero error probability is 
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achieved. Now, it tums out that the channel coding theorem, in terms 
of equivocation, can be proved directly, at least for DMC’s. Although 
this proof is not simpler than the standard proof of the channel coding 
theorem, it provides some additional insight. As expected, when 
R < C the equivocation approaches zero exponentially fast with 
the block length. The additional conclusion from this proof is that 
when the rate is exactly the capacity, the equivocation, normalized 
to bits per channel use (the equivocation rate), approaches zero as 
O(n-l/’) where n is the block length. Furthermore, for R > C, 
the normalized equivocation approaches its minimal value of R - C, 
again, at a rate O(n-l/’). 

The following proof of the coding theorem in terms of equivoca- 
tion, for DMC’s, makes an essential use of random coding arguments 
and it resembles Gallager’s well-known proof [6]. The usual scenario 
is assumed. There is a codebook of size M = 2nR codewords, 
where each codeword is a vector z of length n whose components 
are channel input symbols. To transmit the maximal information 
through the channel, the index of the codeword in the codebook, 
to be transmitted, is selected with a uniform distribution and so the 
codebook may be consideted as a random vector X, whose entropy 
is H ( X )  = l o g M  = nR. In the random coding scenario, the 
codebook is constructed by randomly choosing codewords according 
to some distribution. Our interest is the equivocation H(X1Y) of the 
codebook. To utilize the random coding arguments, we consider the 
average of this equivocation, denoted p(XIY), where the average 
is with respect to an ensemble of randomly selected codebooks. We 
claim the following theorem. 

Theorem 3: Consider a DMC with a transition distribution ~ ( y l z ) .  
Let a codebook be reconstructed by choosing randomly M = 2nR 
codewords, of length n, using an i.i.d. distribution q(z). Then, for any 
0 5 p 5 1, the equivocation, averaged over all codebook selections, 
satisfies 

where Eo(p, q )  is the random coding exponent, 
r 1 l+D 

Y L x  J 
Proof: In the proof we bound from below the average mutual 

information between the codeword input and the channel output, and 
the bound then implies the desired upper bound on the equivocation. 
For a given codebook C = (21,. . . , Z M } ,  define 

The average mutual information, f ( X ;  Y). is the average of (41) 
using the distribution p(zm, y) = ( l / M )  . p(y)z,) and then 
averaging over all selections of codewords according to the i.i.d. 
distribution q(z). It will be useful to interchange the order of 
averaging and use symmetry, as follows. Define 

J ( z m ;  Y) = Ec{Jc(zm; Y)) (42) 

where the expectation is with respect to all codewords 2,’ # zm, 
each chosen with the i.i.d. distribution q(- ) .  The desired average 
mutual information is 

where here the expegtation is with respect to the measure 
q(zm)p(ylz,,,). Note that due to symmetry, this expectation is 
independent of m, and so the right equality in (43) follows. 

Calculating J(z,,,; y) explicitly we get, 

Now for any 0 5 p 5 1 and nonnegative numbers { a ; }  we have both 

(45) 

Thus, we can lower bound J ( z m ;  y) 

J(zrn; r) 

( ;) { [ m [ * ] ” ’ + P ] ’ }  P(YlZ ) (47) 

2 nR - 1 + - (loge)& 
f m  

where for the first inequality we used (45), for the second inequality 
we used (46) and the third inequality follows from the relation 
z log e 2 log (1 + z). Now 

J ( z m ;  II) 

where the first line follows from Jensen’s inequality the second line 
follows by writing the expectation over all x,,,~ # x,,, explicitly and 
observing that after taking the expectation all M - 1 terms in the 
summation over m’ # m become equal, and the inequality in the 
third line follows since M - 1 is replaced by M. 

We now take the second expectation to get a bound for T ( X ;  Y), 
- 
I ( X ;  Y )  

l+P 
(49) 
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Now, since q( - )  and p( . l . )  are i.i.d. distributions, the double sum- 
mation over the vectors can be replaced by a summation over a 
single letter raised to the power of n. Similar manipulations have 
been performed in [6]. Using the definition of the random coding 
exponent (a), E d  recalling that p ( X I Y )  = p ( X )  - T(X; Y )  
where H ( X )  = H ( X )  = nR, the desired result (39) follows. 0 

The inequality (39) holds for any choice of q(.) and p ,  Clearly to 
get the tightest bound, at a given rate R, one has to minimize the RHS 
of (39) with respect to q(.)  and p. Now, the exponent (40) is well 
investigated, and m a x o ~ p ~ l , q ( . ) [ E ~ ( p ,  q )  - pR] is strictly positive as 
long as R < C, providing the random coding exponential decay of 
both the error probability and the equivocation. Note that as R + C 
the optimal q(.) is the distribution that achieves the channel capacity. 

The inequality (39) also holds for any value of R, including R 2 
C. Now, unlike the random coding bound on the error probability 
which becomes useless as it exceeds 1, this bound on the equivocation 
is always meaningful. When R = C we find that the optimal p 
approaches zero. In this case by letting p = pn to vanish with n, and 
using a Taylor expansion of Eo(p, q )  about p = 0 we obtain 

(50) Eo(Pn, q )  - PnC = -YP: + 
leading to the bound 

Now, there are two conflicting goals. On one hand, pn should vanish 
as quickly as possible to make the exponent the smallest. On the other 
hand, it should vanish slow, to make the term l /pn  the smallest. It 
is clear that the optimal choice is pn = p/+, for some constant p, 
which cancels the exponential growth, with the smallest increase of 
the l /pn term. With this choice, at R = C the average equivocation 
of the codebook satisfies 

- 
H(XIY)  I a f i  (52) 

where QC > 0 is some constant. Thus, the average equivocation rate 
decays at the rate of n-’/’. The bound (52) for H ( X J Y )  implies, 
of course, that there exists at least one code C* whose equivocation 
rate vanishes as O(n-l / ’ ) .  

Using (52) it is easy to see that we can construct a random vector 
X whose entropy is R bits per input symbol where R > C, and 
whose equivocation satisfies 

-H(XIY) I R - c + O(n- l / ’ ) .  

The idea is to take the codebook C* described above, which contains 
2nc words, and just replicate each word 2n(R-C) times to get in total 
a codebook of 2nR words. The index of the word is chosen with 
a uniform distribution. The random variable representing the index 
is the encoded input X, and we denote by U the random variable 
representing the codewords themselves, where U can take only 2nc 
different values. Now, X + U ---t Y is a Markov chain and U is 
deterministically determined by X. Thus, 

(53) 
1 
n 

H(XIY)  = H ( X ,  UIY) = H(XIU) + H(U1Y). (54) 

The result (53) follows since by construction H(XlU) = n ( R  - C), 
and since from (52), n-’H(UIY) 5 O(n- l / ’ ) .  Since always 
H(XIY)  2 H ( X )  - maxq I ( X ;  Y) = nR - nC, we conclude 
that the equivocation, per input symbol, can be made exactly R - C, 
at a rate O(n- l / ’ ) .  

The relation between entropy and error probability implies that any 
bound concerning the error probability can be used for bounding the 
equivocation as well. For example, at low rates, a better bound for 

the error probability is provided by the expurgated error exponent. 
Using the standard techniques and similarly to the proof of Theorem 
3, one can easily derive directly, as well, the expurgated bound in 
terms of equivocation. 

We have shown above that at R = C the equivocation rate of 
the codebook vanishes as O(n-’/’) .  One may wonder whether the 
error probability per input symbol (the error probability rate) has a 
similar behavior. Unfortunately, this is not implied by the relations 
between the entropy and error probability. The reason is that the error 
probability rate is given by n-l n ( X i  (Y), while applying the 
relations discussed in Section I1 to (52) yields only a trivial bound 
for n ( X l Y ) .  Nevertheless, in a scenario where the correct symbols 
X1 Xt  are revealed to the decoder before it decodes the next 
symbol X t + l ,  a meaningful upper bound on the error probability 
rate can be derived as follows. The equivocation per input symbol 
can be written as 

. n  

Thus, 

where the right inequality follows from the convexity of 4’ ( e ) .  At 
R = C this means that the error probability rate in this scenario 
approaches zero as O(n-’/’). 
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